\(\int \frac {\sqrt {d x}}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\) [764]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 460 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[Out]

5/16*(d*x)^(3/2)/a^2/d/((b*x^2+a)^2)^(1/2)+1/4*(d*x)^(3/2)/a/d/(b*x^2+a)/((b*x^2+a)^2)^(1/2)-5/64*(b*x^2+a)*ar
ctan(1-b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*d^(1/2)/a^(9/4)/b^(3/4)*2^(1/2)/((b*x^2+a)^2)^(1/2)+5/64*(
b*x^2+a)*arctan(1+b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*d^(1/2)/a^(9/4)/b^(3/4)*2^(1/2)/((b*x^2+a)^2)^(
1/2)+5/128*(b*x^2+a)*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*(d*x)^(1/2))*d^(1/2)/a^(9/4)
/b^(3/4)*2^(1/2)/((b*x^2+a)^2)^(1/2)-5/128*(b*x^2+a)*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(1/2)+a^(1/4)*b^(1/4)*2^(1
/2)*(d*x)^(1/2))*d^(1/2)/a^(9/4)/b^(3/4)*2^(1/2)/((b*x^2+a)^2)^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 460, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1126, 296, 335, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[In]

Int[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(5*(d*x)^(3/2))/(16*a^2*d*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (d*x)^(3/2)/(4*a*d*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x
^2 + b^2*x^4]) - (5*Sqrt[d]*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(32*Sqrt[2]
*a^(9/4)*b^(3/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (5*Sqrt[d]*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*
x])/(a^(1/4)*Sqrt[d])])/(32*Sqrt[2]*a^(9/4)*b^(3/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (5*Sqrt[d]*(a + b*x^2)*
Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(9/4)*b^(3/4)*Sqrt
[a^2 + 2*a*b*x^2 + b^2*x^4]) - (5*Sqrt[d]*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4
)*b^(1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(9/4)*b^(3/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1126

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (b^2 \left (a b+b^2 x^2\right )\right ) \int \frac {\sqrt {d x}}{\left (a b+b^2 x^2\right )^3} \, dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 b \left (a b+b^2 x^2\right )\right ) \int \frac {\sqrt {d x}}{\left (a b+b^2 x^2\right )^2} \, dx}{8 a \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \left (a b+b^2 x^2\right )\right ) \int \frac {\sqrt {d x}}{a b+b^2 x^2} \, dx}{32 a^2 \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\left (5 \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {\sqrt {a} d-\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{32 a^2 \sqrt {b} d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {\sqrt {a} d+\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{32 a^2 \sqrt {b} d \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \sqrt {d} \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{7/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \sqrt {d} \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{7/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 d \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{64 a^2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 d \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{64 a^2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (5 \sqrt {d} \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{7/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\left (5 \sqrt {d} \left (a b+b^2 x^2\right )\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{7/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ & = \frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.39 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\sqrt {d x} \left (4 \sqrt [4]{a} b^{3/4} x^{3/2} \left (9 a+5 b x^2\right )-5 \sqrt {2} \left (a+b x^2\right )^2 \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-5 \sqrt {2} \left (a+b x^2\right )^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{64 a^{9/4} b^{3/4} \sqrt {x} \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \]

[In]

Integrate[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(Sqrt[d*x]*(4*a^(1/4)*b^(3/4)*x^(3/2)*(9*a + 5*b*x^2) - 5*Sqrt[2]*(a + b*x^2)^2*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(
Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - 5*Sqrt[2]*(a + b*x^2)^2*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a]
 + Sqrt[b]*x)]))/(64*a^(9/4)*b^(3/4)*Sqrt[x]*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(616\) vs. \(2(294)=588\).

Time = 0.04 (sec) , antiderivative size = 617, normalized size of antiderivative = 1.34

method result size
default \(\frac {\left (5 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) b^{2} d^{2} x^{4}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} d^{2} x^{4}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} d^{2} x^{4}+40 \left (d x \right )^{\frac {3}{2}} \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} b^{2} x^{2}+10 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a b \,d^{2} x^{2}+20 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,d^{2} x^{2}+20 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,d^{2} x^{2}+72 \left (d x \right )^{\frac {3}{2}} a b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}+5 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a^{2} d^{2}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2} d^{2}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2} d^{2}\right ) \left (b \,x^{2}+a \right )}{128 d \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} b \,a^{2} {\left (\left (b \,x^{2}+a \right )^{2}\right )}^{\frac {3}{2}}}\) \(617\)

[In]

int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/128*(5*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/b)^(1/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2
)*2^(1/2)+(a*d^2/b)^(1/2)))*b^2*d^2*x^4+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4
))*b^2*d^2*x^4+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*b^2*d^2*x^4+40*(d*x)^(
3/2)*(a*d^2/b)^(1/4)*b^2*x^2+10*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/b)^(1/2))/(d*x+(a*
d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a*b*d^2*x^2+20*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b
)^(1/4))/(a*d^2/b)^(1/4))*a*b*d^2*x^2+20*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))
*a*b*d^2*x^2+72*(d*x)^(3/2)*a*b*(a*d^2/b)^(1/4)+5*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/
b)^(1/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a^2*d^2+10*2^(1/2)*arctan((2^(1/2)*(d*x)^
(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2*d^2+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2
/b)^(1/4))*a^2*d^2)/d*(b*x^2+a)/(a*d^2/b)^(1/4)/b/a^2/((b*x^2+a)^2)^(3/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 328, normalized size of antiderivative = 0.71 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {5 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (125 \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (i \, a^{2} b^{2} x^{4} + 2 i \, a^{3} b x^{2} + i \, a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (125 i \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (-i \, a^{2} b^{2} x^{4} - 2 i \, a^{3} b x^{2} - i \, a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-125 i \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-125 \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) + 4 \, {\left (5 \, b x^{3} + 9 \, a x\right )} \sqrt {d x}}{64 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )}} \]

[In]

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")

[Out]

1/64*(5*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-d^2/(a^9*b^3))^(1/4)*log(125*a^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*
sqrt(d*x)*d) - 5*(I*a^2*b^2*x^4 + 2*I*a^3*b*x^2 + I*a^4)*(-d^2/(a^9*b^3))^(1/4)*log(125*I*a^7*b^2*(-d^2/(a^9*b
^3))^(3/4) + 125*sqrt(d*x)*d) - 5*(-I*a^2*b^2*x^4 - 2*I*a^3*b*x^2 - I*a^4)*(-d^2/(a^9*b^3))^(1/4)*log(-125*I*a
^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*sqrt(d*x)*d) - 5*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-d^2/(a^9*b^3))^(1/4)*
log(-125*a^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*sqrt(d*x)*d) + 4*(5*b*x^3 + 9*a*x)*sqrt(d*x))/(a^2*b^2*x^4 + 2*a
^3*b*x^2 + a^4)

Sympy [F]

\[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {d x}}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((d*x)**(1/2)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral(sqrt(d*x)/((a + b*x**2)**2)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\sqrt {d} x^{\frac {3}{2}}}{2 \, {\left (a^{2} b x^{2} + a^{3} + {\left (a b^{2} x^{2} + a^{2} b\right )} x^{2}\right )}} + \frac {5 \, b \sqrt {d} x^{\frac {7}{2}} + a \sqrt {d} x^{\frac {3}{2}}}{16 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )}} + \frac {5 \, \sqrt {d} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{128 \, a^{2}} \]

[In]

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")

[Out]

1/2*sqrt(d)*x^(3/2)/(a^2*b*x^2 + a^3 + (a*b^2*x^2 + a^2*b)*x^2) + 1/16*(5*b*sqrt(d)*x^(7/2) + a*sqrt(d)*x^(3/2
))/(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4) + 5/128*sqrt(d)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) +
2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqr
t(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log
(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/
4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/a^2

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 333, normalized size of antiderivative = 0.72 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\frac {8 \, {\left (5 \, \sqrt {d x} b d^{5} x^{3} + 9 \, \sqrt {d x} a d^{5} x\right )}}{{\left (b d^{2} x^{2} + a d^{2}\right )}^{2} a^{2} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {10 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {10 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} - \frac {5 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {5 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )}}{128 \, d} \]

[In]

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")

[Out]

1/128*(8*(5*sqrt(d*x)*b*d^5*x^3 + 9*sqrt(d*x)*a*d^5*x)/((b*d^2*x^2 + a*d^2)^2*a^2*sgn(b*x^2 + a)) + 10*sqrt(2)
*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b^3*sgn(b*
x^2 + a)) + 10*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)
^(1/4))/(a^3*b^3*sgn(b*x^2 + a)) - 5*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + s
qrt(a*d^2/b))/(a^3*b^3*sgn(b*x^2 + a)) + 5*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*
x) + sqrt(a*d^2/b))/(a^3*b^3*sgn(b*x^2 + a)))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {d\,x}}{{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}} \,d x \]

[In]

int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2),x)

[Out]

int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2), x)